QIU Xingguo, WANG Ruizhi, ZHANG Weiguo, ZHANG Zhaozhao, ZHANG Jing. Discrimination of mine inrush water source based on PCA -CRHJ model[J]. Journal of Mine Automation, 2020, 46(11): 65-71. DOI: 10.13272/j.issn.1671 -251x.2020040089
Citation: QIU Xingguo, WANG Ruizhi, ZHANG Weiguo, ZHANG Zhaozhao, ZHANG Jing. Discrimination of mine inrush water source based on PCA -CRHJ model[J]. Journal of Mine Automation, 2020, 46(11): 65-71. DOI: 10.13272/j.issn.1671 -251x.2020040089

Discrimination of mine inrush water source based on PCA -CRHJ model

More Information
  • Aiming at problems of traditional discriminant model of mine inrush water source, such as poor nonlinear ability, poor model stability and low discrimination accuracy, PCA -CRHJ discriminant model of mine inrush water source is constructed based on principal component analysis (PCA) method and cycle reservoir with hierarchical jumps (CRHJ). PCA is introduced to reduce dimension of multivariate time water inrush sequence and extract key features, the water inrush data is reconstructed to obtain principal component water inrush series, and the CRHJ model is trained by reconstructed sequence. The model completed by the training is applied to water inrush source discrimination in Zhangji Coal Mine and Xinzhuangzi Coal Mine for validity verfication. The results show that: ① By comparing with CRHJ、cycle reservoir with regular jumps (CRJ) and echo state network (ESN) models, the results show that PCA -CRHJ model has the best actual discriminant effect and the accuracy can reach 100%. ② The PCA -CRHJ model has five main types of parameters, namely, reserve pool size, input connection weight, one -way connection weight, hierarchical two -way jump weight and jump step size, the sensitivity analysis of these five types of parameters shows that the input weight parameters have the greatest impact on the model discrimination accuracy. When three kinds of weight parameters obtain the optimal value and remain unchanged, the reserve pool size has the greatest impact on the model error, while the jump step size has less effect.
  • Related Articles

    [1]CAO Xiangang, DUAN Yong, ZHAO Jiangbin, YANG Xin, ZHAO Fuyuan, FAN Hongwei. Summary of research on health status assessment of fully mechanized mining equipment[J]. Journal of Mine Automation, 2023, 49(9): 23-35, 97. DOI: 10.13272/j.issn.1671-251x.18143
    [2]QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation, 2022, 48(9): 69-76. DOI: 10.13272/j.issn.1671-251x.17984
    [3]LI Man, PAN Nannan, DUAN Yong, CAO Xiangang. Construction of health index and condition assessment of coal mine rotating machinery[J]. Journal of Mine Automation, 2022, 48(9): 33-41. DOI: 10.13272/j.issn.1671-251x.18004
    [4]LIU Yi, ZHANG Weitao, ZHANG Fan. Fatigue state perception in underground production operation practice[J]. Journal of Mine Automation, 2022, 48(2): 114-118,130. DOI: 10.13272/j.issn.1671-251x.17875
    [5]CAO Xiangang, LI Yanchuan, LEI Zhuo, LEI Yinan. Research on intelligent evaluation method of health state of shearer[J]. Journal of Mine Automation, 2020, 46(6): 41-47. DOI: 10.13272/j.issn.1671-251x.17596
    [6]MEN Rujia, LEI Zhipeng, LIN Lingyan, ZHANG Guodong, ZHAO Ruixue, ZHU Jianfei, XU Chunyu, SONG Jiancheng, TIAN Muqin. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging[J]. Journal of Mine Automation, 2019, 45(4): 67-71. DOI: 10.13272/j.issn.1671-251x.2019010038
    [7]ZHANG Yuzhen, JI Xingquan, YU Yongjin, LIANG Yongliang, FAN Shuxian. Insulation condition assessment method of mine-used transformer based on spatio-temporal information fusio[J]. Journal of Mine Automation, 2017, 43(9): 75-82. DOI: 1671-251X(2017)09-0075-08DOI:10.13272/j.issn.1671-251x.2017.09.014
    [8]WANG Jingtao, LU Jingui, ZHU Zhengquan, QIAN Peng, LIN Xiaochuan, WANG Bangxiang. Approximate estimation of fatigue life of hydraulic support[J]. Journal of Mine Automation, 2017, 43(3): 39-42. DOI: 10.13272/j.issn.1671-251x.2017.03.009
    [9]YAO Lingling, HE Naibao, GAO Qian, SONG Wei. Fatigue life prediction method of hydraulic support front link[J]. Journal of Mine Automation, 2015, 41(10): 46-48. DOI: 10.13272/j.issn.1671-251x.2015.10.012
    [10]LI Bo, HUANG Yuan-yue. Underground Risk Assessing Method Based on Rough Set and D-S Evidence Theory[J]. Journal of Mine Automation, 2011, 37(11): 38-40.
  • Cited by

    Periodical cited type(9)

    1. 王丽丽. 基于改进RRT算法的井下巷道漫游路径规划方法. 现代电子技术. 2024(12): 62-68 .
    2. 薛光辉,刘爽,王梓杰,李亚男. 基于改进概率路线图算法的煤矿机器人路径规划方法. 工矿自动化. 2023(06): 175-181 . 本站查看
    3. 韩国国,范柄尧. 差分进化算法在煤矿井下移动设备路径规划的应用研究. 中国设备工程. 2022(19): 91-92 .
    4. 郭泰,颜铤. 煤矿救援机器人路径规划的蚁群优化算法. 能源与环保. 2021(11): 233-238 .
    5. 封硕,谢廷船,康靖,李建良. 基于双粒子群算法的矿井搜救机器人路径规划. 工矿自动化. 2020(01): 65-71 . 本站查看
    6. 武达,王然风,付翔,梁毅. 矿用机器人局部路径优化算法研究. 煤炭工程. 2020(03): 132-136 .
    7. 侯力扬,李金宝. 煤矿井下水仓智能清淤机器人的路径规划算法研究. 电子测量技术. 2020(19): 75-79 .
    8. 孟广雄,闫海勇,刘俊梅,田军,黄国坤. 炸药混装车智能精准装药系统构建及效益分析. 煤炭工程. 2020(S2): 1-5 .
    9. 李佳儒,王玉珍. 新零售背景下生鲜食品超市配送路径优化研究. 邵阳学院学报(自然科学版). 2019(03): 27-35 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (63) PDF downloads (14) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return